

Geology and Oil-gas Business Institute named after K. Turyssov Department of Chemical and Biochemical Engineering

EDUCATION PROGRAM

6B07117 – CHEMICAL TECHNOLOGY OF PETROLEUM AND GAS CHEMICAL PRODUCTS

Code and classification of the field of education: **6B07** Engineering, manufacturing and construction industries

Code and classification of areas of study: **6B071** Engineering and Engineering (0710)

Group of educational programs: 6B060 Chemical engineering and processes

Уровень по НРК: 6

Уровень по ОРК: 6

Year of study: 4

Credits: 240

Almaty 2025

The educational program 6B07117 «Chemical technology of Petroleum and gas chemical products» was approved at the meeting of the Scientific Council of KAZNTU named after K.I.Satpayev

Protocol №10 from «06» 03 2025y

Reviewed and recommended for approval at a meeting of the Educational and Methodological Council of K.I.Satpayev KazNTU

Protocol №3 from «20» 12 2024y

The educational program 6B07117 «Chemical technology of Petroleum and gas chemical products» was developed by the academic committee in the direction 6B071 «Engineering and Engineering»

Name	Academic degree/ academic	Post	Place of work	
Chairman of the	Academic Com	mittee:		
Selenova Bagadat Samatovna	Doctor of Chemical Sciences	Professor	Kazakh National Research Technical University named after K.I.Satpayev	Sleph
Teaching staff:				
Mangazbaeva Rauash Amantaevna	Candidate of Chemical Sciences	Associate Professor	Kazakh National Research Technical University named after K.I.Satpayev	Mone
Aitkalieva Gulzat Slyashevna	Doctor phD	Associate Professor	Kazakh National Research Technical University named after K.I.Satpayev	Ayer
Employers			-	^
Seitenova Gaini Zhumagalievna	Candidate of Chemical Sciences	Head of the Project Office	Petro Gas Chemical Association,	cal
Students:				
Bogdanova Violetta	-	Student	Kazakh National Research Technical University named after K.I.Satpayev	TAGE

Table of contents

1.	Description of educational program	4
2.	Purpose and objectives of educational program	4
3.	Requirements for the evaluation of educational program learning	5
	outcomes	
4.	Passport of educational program	5
4.1.	General information	5
4.2.	Relationship between the achievability of the formed learning	8
	outcomes according to educational program and academic	
	disciplines	
5.	Curriculum of educational program	52

1. Description of educational program

The educational program (hereinafter EP) is a set of documents developed by the Kazakh National Research Technical University named after K.I. Satpayev and approved by the Ministry of Education and Science of the Republic of Kazakhstan. The EP takes into account the needs of the regional labor market, the requirements of state bodies and the corresponding industry requirements. The oil and gas industry is one of the foundations of the economy of Kazakhstan. It includes a set of

interrelated processes and industries from geological exploration to oil and gas refining and sales. In this chain, the process of oil and gas processing stands apart, since as we move along the technological chain, there is a rapid increase in added value (petrochemical products of high conversions).

EP is based on the state educational standard for higher professional education in the relevant field.

The EP determines the programmatic educational goals, student learning outcomes, the necessary conditions, content and technologies for the implementation of the educational process, assessment and analysis of the quality of students during training and after graduation.

EP includes the curriculum, discipline content and learning outcomes and other materials to ensure quality education for students.

2. Purpose and objectives of the educational program

The purpose of the educational program: Training highly qualified and indemand specialists in modern technologies for oil and gas processing, organic synthesis, and petrochemistry, capable of developing and implementing innovative, resource-efficient, and environmentally responsible solutions for the sustainable development of the petrochemical and oil refining industries.

The mission of the educational program "Chemical technology of petrochemical products" of the first cycle of the direction "6B071 Engineering and optimization and modernization of oil and gas processing, oil and gas chemical industries and enterprises for the production and processing of polymers, materials and devices, which determine the innovative development of scientific and technological progress and an increase in the standard of living of society.

Objectives of the educational program:

- Studying the cycle of general education disciplines to ensure social and humanitarian education based on the laws of the socio-economic development of society, history, modern information technologies, the state language, foreign and Russian languages.
- Studying the cycle of basic disciplines to provide knowledge of natural science, general technical and economic disciplines, as the foundation of professional education.
- Studying a cycle of major disciplines for the formation of theoretical knowledge, practical skills and abilities in the field of chemical engineering and engineering.
- Study of disciplines that form knowledge, skills and abilities of planning and organizing research, designing technological schemes, equipment and apparatus, including using modern computer technologies and programs.
- Acquaintance with chemical-technological processes and equipment of oil and gas chemical complexes during the period of production practices.
- Acquisition of skills and abilities of modern analytical quality control of raw materials and commercial products.

3. Requirements for evaluating the learning outcomes of an educational program

The educational program has been developed in accordance with the State mandatory Standards of Higher and Postgraduate Education, approved by the Order of the Minister of Science and Higher Education of the Republic of Kazakhstan dated July 20, 2022 No. 2 (registered in the Register of State Registration of Regulatory Legal Acts under No. 28916) and reflects the learning outcomes on the basis of which curricula are developed (working curricula, individual curricula of students) and working curricula in disciplines (syllabuses).

Formed learning outcomes: applies knowledge of natural science, socioeconomic and profile disciplines of chemical technology to solve practical and professional tasks of the technological industry.

Evaluation of learning outcomes is carried out according to the developed test tasks within the educational program in accordance with the requirements of the state mandatory standard of higher and postgraduate education.

When evaluating learning outcomes, uniform conditions and equal opportunities are created for students to demonstrate their knowledge, skills and abilities. To use modern information technologies for the collection, processing and dissemination of scientific information in the field of technology for the production and processing of oil, gas, mineral and bio-raw materials, their relationship with related industries.

4. Passport of the educational program

4.1. General information

No	Field name	Note
1	Code and	6B07 «Engineering, manufacturing and construction industries»
	classification of the	
	field of education	
1	Code and	6B071 «Engineering and Engineering (0710)»
	classification of areas	
	of study	
3	-	6V060 Chemical Engineering and Processes"
4	programs Name of the	6B07117 Chemical technology of petroleum and chemical products
	educational program	
5	Brief description of	The educational program (hereinafter EP) is a set of documents
	the educational	developed by the Kazakh National Research Technical University
	program	named after K.I. Satpayev and approved by the Ministry of Education
		and Science of the Republic of Kazakhstan. The EP takes into account
		the needs of the regional labor market, the requirements of
		government agencies and relevant industry requirements.
6	Purpose of the OP	Training of highly qualified specialists who are most in demand in the
		field of modern technologies for oil and gas processing, the synthesis
		of organic substances, petrochemistry, focused on solving the
		problems of innovative development of the most important areas of
		the petrochemical and oil refining industries
7	OP type	new
8	NQF level	6
9	ORC level	6

10	Distinctive features of the OP	The EP was developed considering the Atlas of new professions and competencies of Kazakhstan in the field of chemical technology of organic substances.
11	List of competencies of the educational program:	KK1.Communication - Fluent monolingual oral, written and communication skills - The ability to use communicative communication in various situations KK 2. Basic literacy in natural science disciplines - basic understanding of the scientific picture of the world with an understanding of the
		essence of the basic laws of science KK3.General engineering competencies - basic general engineering skills and knowledge, the ability to solve general engineering tasks and problems KK4.Professional competencies
		 a wide range of theoretical and practical knowledge in the professional field; the ability to carry out the technological process in accordance with the regulations and use technical means to measure the main parameters of the technological process, the composition and properties of raw
		materials and finished products; KK5. Engineering and computer competencies - basic skills of using computer programs and software systems to solve general engineering tasks KK6.Engineering and working competencies
		 skills and abilities of using technical means and experimental devices to solve general engineering tasks KK7. Socio-economic competencies Critical understanding and cognitive ability to reason on contemporary
		social and economic issues KK8. Specially-professional competencies for the perception of information, setting goals and choosing ways to achieve it; – the ability to independently organize the work of performers, find and make management decisions in the field of labor organization and
		implementation of environmental measures; – knowledge of the principles of management, control and correction of activities in the context of teamwork, improving managerial and executive professionalism.
12	Learning outcomes of the educational program:	RO1 Mastering the basics of Project Management and decision-making methods used in the development, design and operation of technological processes; RO2 Apply methods of chemical and physico-chemical analysis of petroleum and petrochemical products to improve petroleum and gas refining processes.;
		PO3 Apply acquired theoretical knowledge to analyze the impact of engineering decisions in global, economic, environmental, and societal contexts, taking into account the principles of sustainable development and social responsibility.; PO4 To be able to combine theory and practice in solving engineering
		problems; ability to independently define, formulate and solve technical problems; RO5 Demonstrate knowledge of socio-ethical values and trends in the social, political and economic development of society in their professional activities, as well as leadership skills and willingness to

	maintain partnerships, while showing intolerance to any corruption
	manifestations and a firm civic position;
	RO6 Know the theoretical foundations of industrial processes, the
	structure of technological schemes and the relationship of individual
	technological stages in the production of petrochemical products;
	RO7 Be able to apply the methods of mathematical analysis and
	modeling in the design and optimization of technological processes,
	demonstrate skills in calculating typical equipment for the main types
	of production;
	RO8 Demonstrate knowledge of the chemical processing of oil and
	hydrocarbon gas, the production of organic substances and
	petrochemical products;
	RO9 Ensure the safe operation of technological equipment in
	compliance with occupational safety, industrial safety, and
	environmental protection requirements in the context of sustainable
	industry development.;
	RO10 Know and understand the fundamental laws of natural sciences
	and special technical disciplines, be able to operate with them in
	professional activities;
	RO11 Apply basic knowledge about catalysts and catalytic processes to
	select optimal ways/technologies for processing raw materials into
	industrially important products;
	RO12 Apply knowledge on corrosion prevention in oil production at
	refineries; use various techniques, skills and modern engineering tools
	for engineering activities.
Form of study	Full-time
Training period	4 years
Volume of loans	240
Languages of	Kaz, Russian and English
instruction	
Awarded Academic	Bachelor of Engineering and Technology
Degree	
Developer(s) and	Selenova B.S., Mangazbayeva R.A., Aitkaliyeva G.S.
authors:	

4.2. The relationship between the achievability of the formed learning outcomes in the educational program and academic disciplines

No	Name of discipline	Brief description of	Numbe	auciii		<u></u>	Fori	med lea	rning	outcon	nes (co	des)			
		discipline	r of credits												
				PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
				Cycle of	hasic d	iscinlir	168								
				Univer											
1	English language	English is a discipline of the general education cycle. After determining the level (according to the results of diagnostic testing or IELTS results), students are divided into groups and disciplines. The name of the discipline corresponds to the level of English proficiency.		v	3										
2	Kazakh (russian) language	When moving from level to level, prerequisites and postrequisites of disciplines are observed.	10	v											
3	Physical culture	The purpose of the discipline is to master the forms and methods of forming a healthy lifestyle within the framework of the professional education system. Familiarization with the natural-scientific basics of physical													

		education, knowledge of modern health-improving technologies, basic methods of independent physical education and sports. As part of the course, the student will master the rules of judging in all sports.								
4	Information and communication technologies (in English)	The socio-political, socio- cultural spheres of communication and functional styles of the modern Kazakh (Russian) language are considered. The course covers the specifics of the scientific style in order to develop and activate the professional communication skills and abilities of students, allows students to practically master the basics of the scientific style and develops the ability to produce a structural and semantic analysis of the text.	5			V				
5	Modern history of Kazakhstan	Required component. The task of studying the discipline is to acquire theoretical knowledge about information processes, new information	5	V						

	technologies, local and global computer networks, methods of information protection; obtaining skills in the use of text editors and spreadsheet processors; creation of databases and various categories of application programs.							
6 Philosophy	Philosophy forms and develops critical and creative thinking, worldview and culture, provides knowledge about the most general and fundamental problems of being and endows them with a methodology for solving various theoretical practical issues. Philosophy expands the horizon of vision of the modern world, forms citizenship and patriotism, contributes to the education of self-esteem, awareness of the value of human existence. It teaches to think and act correctly, develops the skills of practical and cognitive activity, helps to seek and find ways and means of life in harmony	5						

		with oneself, society, and								
		the world around.								
7	Module of socio-	Studying the course	3	V						
	political knowledge	contributes to the								
	(sociology, political	formation of students'								
	science)	theoretical knowledge								
	ŕ	about society as an integral								
		system, provides the								
		political aspect of training								
		a highly qualified								
		specialist on the basis of								
		modern world and								
		domestic political thought.								
		The discipline is designed								
		to improve the quality of								
		both general humanitarian								
		and professional training								
		of students. Knowledge in								
		the field of sociology and								
		political science is								
		necessary for								
		understanding political								
		processes, for forming a								
		political culture,								
		developing a personal								
		position and a clearer								
		understanding of the								
		measure of one's								
		responsibility.								
8	Module of socio-	The module of socio-	5		V					
	political knowledge	political knowledge								
	(culturology,	(culturology, psychology)								
	psychology)	is designed to acquaint								
		students with the cultural								
		achievements of mankind,								

	for their understanding and	1									
	assimilation of the main										
	forms and universal										
	patterns of the formation										
	and development of										
	culture. During the course										
	of cultural studies, general										
	problems of the theory of										
	culture, leading cultural										
	concepts, universal										
	patterns and mechanisms										
	for the formation and										
	development of culture,										
	the main historical stages										
	of the formation and										
	development of										
	Kazakhstani culture are										
	considered.										
		Cycle	of gener				S				
	· · · · · · · · · · · · · · · · · · ·		Selectab	ole con	ponen	t					
9	Fundamentals of Purpose: To develop basic	5			V		V				
	Entrepreneurship and knowledge of economic										
	Leadership processes and skills in										
	entrepreneurial activities.										
	Content: The course aims										
	to develop skills in										
	analyzing economic										
	concepts such as supply										
	and demand, and market										
	equilibrium. It includes the										
	basics of creating and										
	managing a business,										
	developing business plans,										
	risk assessment, and										
	strategic decision-making.										

10	Basics of Financial	Purpose: formation of	5		V	V				
	Literacy	financial literacy of								
		students on the basis of								
		building a direct link								
		between the acquired								
		knowledge and their								
		practical application.								
		Contents: using in practice								
		all kinds of tools in the								
		field of financial								
		management, saving and								
		increasing savings,								
		competent budget								
		planning, obtaining								
		practical skills in								
		calculating, paying taxes								
		and correctly filling out tax								
		reports, analyzing financial								
		information, orienting in								
		financial products to								
		choose adequate								
		investment strategies.								
11	Law basics	The purpose of the study:	5		V					
		To attain knowledge in								
		legal sphere in order to use								
		them effectively in								
		engineering activity; To								
		make students know about								
		efficient management of a								
		work collective basing on								
		legal mechanisms. Short								
		content: the course allows								
		students to get knowledge								
		about specified directions								
		of law, to organize								

		information about subject and object of legal relations, about the main institutes and functions of legal directions. Expected results: After the course studying students should know, how to use legal											
		norms in particular situations, how to make											
		necessary documents and how to use special legal											
		measures to restore broken rights.											
			(Cycle of	basic d	lisciplii	1es						
	.			Univer	sity con	nponer		 ı		П	ı		
12	Mathematics I	Purpose: to introduce students to the fundamental concepts of linear algebra, analytical geometry and mathematical analysis. To form the ability to solve typical and applied problems of the discipline. Contents_ Elements of linear algebra, vector algebra and analytical geometry. Introduction to the analysis. Differential calculus of a function of one variable. The study of functions using derivatives. Functions of several variables. Partial	5				V					V	

		derivatives. The extremum of a function of two variables.								
13	Physics	Purpose:To form ideas about the modern physical picture of the world and scientific worldview, the ability to use knowledge of fundamental laws, theories of classical and modern physics. Contents_physical fundamentals of mechanics, fundamentals of molecular physics and thermodynamics, electricity and magnetism, vibrations and waves, optics and fundamentals of quantum physics.	5		v				v	
14	Mathematics II	Purpose: To teach students integration methods. To teach you how to choose the right method for finding the primitive. To teach how to apply a certain integral to solve practical problems. Contents_ integral calculus of the function of one and two variables, series theory. Indefinite integrals, methods of their calculation. Certain integrals and applications of certain integrals.	5		v				v	

		Improper integrals. Theory of numerical and functional series, Taylor and Maclaurin series, application of series to approximate calculations								
15	Engineering and computer graphics	Purpose: To develop students' knowledge of drawing construction and skills in developing graphical and textual design documentation in accordance with standards. Content: Students will study ESKD standards, graphic primitives, geometric constructions, methods and properties of orthogonal projection, Monge's projection, axonometric projections, metric tasks, types and features of connections, creating part sketches and assembly drawings, detailing, and creating complex 3D solid objects in AutoCAD.	5				v		v	
16	Introduction to specialty	The purpose of the discipline is to acquaint students who have started studying at the university with the basic and basic provisions of the specialty and training program; the	4	V	V					

		development of interest in the chosen profession, the formation of students' competence and understanding of the chosen field of study, initial professional knowledge about the physico-chemical fundamentals of organic matter technology; the formation of technological and environmental thinking among students. The basic initial concepts of chemical technology are considered: kinetic patterns of chemical transformations, types of reactors and equations of molar balances, technological indicators of processes, preparation of technological schemes of							
		chemical processes.							
17	Chemistry	Purpose: formation of knowledge on fundamental issues of general chemistry and skills of their application in professional activity. Summary Laws, theoretical propositions and conclusions that underlie chemical disciplines; properties and	5		v			v	

		relationships of chemical elements based on the periodic law of D.I.Mendeleev and on modern ideas about the structure of matter; fundamentals of chemical thermodynamics and kinetics; processes in solutions; structure of complex compounds.							
18	Organic Chemistry I	The purpose of the discipline is to master the complex of knowledge and scientific ideas about the fundamental theoretical and experimental foundations of organic chemistry of aliphatic compounds; in obtaining students' knowledge of the basic concepts of theoretical organic chemistry, mastering the skills to characterize the structure, physicochemical properties of organic substances, as well as modern methods of synthesis of organic substances. The course forms the basis of chemical reactions and methods of synthesis of organic compounds for the most	6					v	

		important branches of the chemical and biochemical industry								
19	Organic Chemistry II	The aim of the course is to study the general patterns of organic reactions of cyclic compounds, such as cycloalkanes, aromatic hydrocarbons, and heterocyclic compounds. Each class of compounds is considered in terms of their chemical structure, isomerism and nomenclature, method of preparation, physical and chemical properties, and scope of their application. In the process of mastering this discipline, the student forms and demonstrates competencies that allow applying the acquired basic scientific and theoretical knowledge to solve scientific and practical problems.	5						v	
20	Fundamentals of petrochemical synthesis	Formation of students' understanding of modern industrial processes for the production of various hydrocarbons, their halogen- and oxygen- containing derivatives as raw materials for	5	v	V					

1	1	1	ı	1	1	1			ı	1
5			V	v						
	1	1	1		1	1			1	I

		1 1 1 1 0 1 1		1							<u> </u>
		calculation of the main									
		technical devices and									
		installations; -industrial									
		methods and technology of									
		oil and gas treatment.									
22	Collection,	To form students' readiness	5		V	v					
	preparation and	for production,									
	transportation of	technological and project									
	hydrocarbon gas	activities, ensuring the									
		modernization,									
		implementation and									
		operation of equipment for									
		production, for									
		organizational and									
		management activities for									
		making professional									
		decisions in the									
		interdisciplinary areas of									
		modern oil and gas									
		technologies using the									
		principles of management									
		and management. As a									
		result of mastering the									
		discipline, the student									
		forms and demonstrates									
		competencies that allow to									
		apply the obtained basic									
		scientific and theoretical									
		knowledge in the field of									
		collection, preparation and									
		transportation of									
		hydrocarbon gas.									
23	Technological	Formation of students'	5		v	v					
23	processes of oil	understanding of	J		•	*					
	processes of off	technological processes of									
		desimological processes of		1]	1]	1	

	production	oil production								
	intensification	intensification, acquisition								
		of theoretical knowledge								
		necessary for the								
		development of								
		economically feasible and								
		environmentally safe oil								
		production technology and								
		engineering calculation								
		skills. As a result of the								
		discipline, the student								
		forms competencies that								
		allow the correct								
		application of the acquired								
		knowledge to lay the								
		scientific foundations of								
		technological processes for								
		the intensification of oil								
		production; apply								
		demonstrate skills.								
24	CAD Chemical	The purpose of studying	5		V		v			
	Engineering I	the discipline is to develop								
		the ability to create								
		effective and optimal								
		technologies for various								
		chemical processes using								
		the modeling computer								
		program CemKad. The								
		issues considered in the								
		course are the study of the								
		laws of hydromechanical								
		and heat exchange								
		processes occurring in								
		various systems, and the								
		development of various								

		calculation methods. The								
		method of calculating								
		chemical technology								
		devices using a modeling								
		program. The course-forms								
		the student's ability to								
		perform engineering and								
		technological calculations								
		using a computer modeling								
		program, encourages the								
		creation of various								
		projects.								
25	CAD Chemical	The purpose of the	5		v		v			
	Engineering II	discipline is to study the	C		·		,			
	Liighteering ii	modeling of chemical and								
		technological processes								
		using the AspenHysys								
		modeling software								
		package. The course								
		studies the basic concepts								
		of the modeling method,								
		methods of constructing a								
		technological scheme,								
		characteristics of the								
		technological scheme and								
		flows, calculation of								
		parameters of all flows and								
		equipment. The course								
		forms the ability to								
		develop an optimal								
		chemical process								
		technology with a high-								
		quality output of the target								
		product.								
		product.								

26	Hardware design o	fThe course forms students'	5		v					
	oil and gas	understanding of the laws								
	processing	of hydromechanical and								
	processes I	heat exchange processes								
		occurring in systems with								
		several phases and several								
		components. Students								
		study the basic methods of								
		calculating the equipment,								
		choosing a rational design								
		and determining the size of								
		the devices. As a result, the								
		course forms competencies								
		that allow calculations of								
		processes and apparatuses								
		of hydromechanical and								
		heat exchange processes,								
		perform constructive								
		calculations of apparatuses.								
27		f The course forms students'	4		V			V		
	oil and gas	understanding of the								
	processing	regularities and								
	processes II	mathematical description								
		of mass transfer processes								
		occurring in systems with								
		several phases and several								
		components. Students will								
		be able to apply the								
		acquired theoretical and								
		practical skills for								
		independent work on								
		performing calculations of								
		chemical equipment and								
		graphic design of design								
		objects.								

28	Fundamentals of	The purpose of studying	5	V	V				
	physicochemical	the discipline is to							
	analysis of oil	systematize theoretical and							
	refining and	applied knowledge about							
	petrochemical	modern methods of							
	products	analysis of petroleum							
		products and their mixtures							
		of both natural and							
		artificial origin. The main							
		physical research methods							
		used in the analysis of							
		products of petrochemical							
		synthesis are considered:							
		spectral and							
		chromatographic methods,							
		as well as standardized by							
		GOST. As a result of							
		mastering the discipline,							
		the student must: know							
		standardized modern							
		physico-chemical methods							
		of qualitative and							
		quantitative analysis of							
		petroleum products.							
29	Technology of	To form the ability to use	5	V	V				
	processing of	knowledge of the physico-							
	hydrocarbon raw	chemical features of the							
	materials I	technology of processing							
		heavy oil raw materials in							
		order to increase the depth							
		of oil refining. Preparation							
		of graduates for production							
		and technological							
		activities, search and							
		acquisition of new							

	information, integration of knowledge in relation to professional activity. To form basic knowledge and basic concepts of technology, ideas about its fundamental laws and basic methods, the ability to acquire new knowledge in the field of natural sciences.							
Processing technology of hydrocarbon II	The purpose of the discipline is to provide	5	V	V				

		development of																	
		technological processes.																	
31	Practical training	Passing an instruction on	2			V		V											
		familiarization with the																	
		requirements of labor																	
		protection, safety, fire																	
		safety, and the rules of the																	
		internal labor regulations																	
		of the enterprise.																	
		Conducting a general tour																	
		of the enterprise, studying																	
		the structure. The stage of																	
		collecting, processing and																	
		analyzing technical or																	
		technological information																	
		on the technology being																	
		implemented.																	
			(Cycle of									v						
	T			Selecta	ble con	nponen	t		ı	1	1	T	1	1					
32	Analytical	The purpose of the course	5		V							v							
	chemistry and	is to master the methods of																	
	physico-chemical	analysis of organic																	
	methods of analysi	ssubstances and their																	
		application to solve																	
		problems in professional																	
		activity. The course																	
		discusses the principles																	
		and methods of																	
		determining the chemical																	
		composition of substances																	
		and their structure,																	
		including using physico-																	
		chemical research																	
		methods. Application of																	
		analytical methods for																	

		product quality control in various industries.								
33		Purpose: to form students' abilities to understand the physico-chemical essence of processes and to use the basic laws of physical chemistry in complex industrial and technological activities. Contents: laws of thermodynamics; basic equations of chemical thermodynamics; methods of thermodynamic description of chemical and phase equilibria in multicomponent systems; properties of solutions; fundamentals of electrochemistry; basic concepts, theories and laws of chemical kinetics and catalysis.	5						V	
34	scientific research	Purpose: to form students' research skills, to develop interest in scientific activity. Content: based on the course study, students will consider: - formation of practical skills in planning and performing scientific research; - development of skills of independent search,	5	v		v	v	v		

		analysis and use of scientific information using software and hardware; - mastering the concepts of sustainable development and ESG principles, with an emphasis on their application in the oil and gas sector of Kazakhstan.									
35	Ecology and life safety	The discipline studies the main approaches to solving environmental problems; sources and types of environmental pollution by transport enterprises; methods of reducing harmful effects on the environment. Natural and man-made emergencies, their causes, methods of prevention and protection. Carrying out rescue and other urgent work, rules of behavior of people in emergency situations.	5		v				V		
	General chemical technology	The purpose of the course: to study the general patterns of chemical and technological processes (CTP) of the most important chemical industries. The course examines the patterns of chemical transformations	5	V		v			v		

General principles of chemical and technological processes	in industrial production conditions; basic chemical equipment. Calculation of technical and economic indicators of the process, material and energy balances. Industrial catalysis. Basic mathematical models of chemical reactors. Methods of development of effective chemical-technological processes and systems, methods of energy and resource conservation, environmental protection. The course is designed to get acquainted with the general laws of chemical technology, the most typical chemical-technological processes, reactors and chemical-technological systems. As a result, the course forms competencies that allow carrying out the technological process in	5	V		v			V		
	a result, the course forms competencies that allow									
	technological process in									
	accordance with the regulations and using technical means to control									

		properties of raw materials and products								
38	Automation of control systems in chemical-technological processes	and products The purpose of studying the discipline is to acquire the knowledge necessary for effective use in the development of modern automatic control systems. Gaining skills in building and researching mathematical models. Possession of TAR sections necessary for solving research and applied problems. The course "APCS" provides a presentation of the sections of the basics of TAP, measuring elements, actuators, functional diagrams. The study of this discipline will allow the student to acquire the skills to choose the types of switching devices and regulators depending on the law of regulation, to develop a functional and mathematical model of the control system, to analyze	6						v	
		the operation of the system based on quality indicators of regulation.								
39	Automation of control systems	Purpose: - to form the ability to develop, research	6		v		V			

	and operate modern automated process control systems. As a result of training: understand the theory and practice of automated process control systems, learn the principles of building a technical base, mathematical and information support for automated process control systems, be able to apply the basic principles of preparing technological processes and industries for automation.								
Fundamentals of Artificial Intelligence	Purpose: to familiarize students with the basic concepts, methods and technologies in the field of artificial intelligence: machine learning, computer vision, natural language processing, etc. Contents: general definition of artificial intelligence, intelligent agents, information retrieval and state space exploration, logical agents, architecture of artificial intelligence systems, expert systems, observational learning,	5		v					

		statistical learning methods, probabilistic processing of linguistic information, semantic models, natural language processing systems.								
	Fundamentals of sustainable development and ESG projects in Kazakhstan	Purpose: the goal is for students to master the theoretical foundations and practical skills in the field of sustainable development and ESG, as well as to develop an understanding of the role of these aspects in the modern economic and social development of Kazakhstan. Contents: introduces the principles of sustainable development and the implementation of ESG practices in Kazakhstan, includes the study of national and international standards, analysis of successful ESG projects and strategies for their implementation in enterprises and	5	v						
42	Fundamentals of	organizations. The course introduces	5		v	v				
		students to the improvement of socio-			·	·				
		economic relations of Kazakhstan society, psychological features of								

	corrupt behavior. Special attention is paid to the formation of an anticorruption culture, legal responsibility for acts of corruption in various spheres. The purpose of studying the discipline "Fundamentals of anticorruption culture" is to increase public and individual legal awareness and legal culture of students, as well as the formation of a knowledge system and a civic position on combating corruption as an antisocial phenomenon. Expected results: to realize the values of moral consciousness and follow moral norms in everyday practice; to work on improving the level of moral and legal culture: to								
	improving the level of moral and legal culture; to use spiritual and moral								
	mechanisms to prevent corruption.								
43	Purpose of the course: It focuses on studying ESG (Environmental, Social, Governance) principles and their interaction with the creation of an inclusive	5		v	v		V		

organization. Content:
Students will gain
knowledge on how
implementing ESG
principles contributes to
corporate social
responsibility, sustainable
development, and equal
opportunities for all
employees, including those
who may face various
forms of discrimination.
The course will help
students understand the
importance of an inclusive
culture in achieving long-
term business goals and
ensuring sustainable
organizational
development.

44	Legal regulation o	f Purpose: the goal is to	5			V		v				
	intellectual	form a holistic										
	property	understanding of the										
		system of legal regulation										
		of intellectual property,										
		including basic principles,										
		mechanisms for protecting										
		intellectual property rights										
		and features of their										
		implementation. Content:										
		The discipline covers the										
		basics of IP law, including										
		copyright, patents,										
		trademarks, and industrial										
		designs. Students learn										
		how to protect and manage										
		intellectual property rights,										
		and consider legal disputes										
		and methods for resolving										
		them.										
			С	vele of i	nrofile	discipli	nes					
			•			nponen						
45	Fundamentals of	The purpose of the	5	V			V			V		
	enterprise design	discipline is to study the										
		structures, the principle of										
		operation of basic and										
		special equipment for										
		chemical production,										
		familiarization with its										
		main components and										
		details. At the end of the										
		course, the student should										
		know the basic principles										

		1		 	 	 	 	 	
		of design and development							
		of a feasibility study of							
		production; parameters and							
		modes of operation of							
		standard equipment;							
		typical processes of							
		chemical technology,							
		corresponding devices and							
		methods of their							
		calculation; requirements							
		for the technical condition							
		of equipment; methods of							
		technological calculations							
		of individual components							
		and parts of chemical							
		equipment.							
46	Chemical	The purpose of this	4	v	v		V		
	processing of	discipline is to study the							
	hydrocarbon gas	theoretical foundations and							
		technology of chemical							
		processing of natural and							
		associated gas. As a result							
		of mastering the discipline,							
		the student should know: -							
		composition and physico-							
		chemical properties of							
		hydrocarbon gases; -							
		chemistry and mechanism							
		of the most important							
		catalytic processes of							
		hydrocarbon gas							
		processing; - technologies							
		for obtaining the main							
		products of organic and							
		petrochemical synthesis							

		(paraffins, olefins, methanol, synthesis gas, monomers for polymerization and polycondensation of polymer materials.							
47	Technology of organic and petrochemical production	The course examines the use of modern processes for obtaining organic products based on hydrocarbon raw materials: their specifics and technological features of the hardware design of the most important processes of the branch of basic organic and petrochemical synthesis and promising areas for their improvement, the assimilation of the principles of the organization of waste-free and low-waste production, as well as the directions of their improvement for the purpose of resource and energy conservation, increasing industrial and environmental efficiency. security. Basic knowledge and skills in the field of technological processes for obtaining organic and	4	V			V		
		petrochemical synthesis		1					

		products, as well as methods for optimizing production processes will be presented.									
48	Equipment of an oil and gas enterprise	The course of this discipline is the study of the composition of the project (working draft), design and estimate documentation, the grounds for its development, the organizational foundations of the design of an oil and gas enterprise, the study of the designs of equipment for oil refining. In the course of studying the discipline, students also gain skills in using scientific, technical and reference literature, determining the technical characteristics of devices and equipment and evaluating their technical and reference.	6	V		¥			V		
49	Pipeline transport of oil and oil products	The purpose of the course is to study the technology of pipeline transportation of oil and petroleum products, including oil and gas production sites with places of their processing and consumption. The	4				v				

				1							
		course also studies the									1
		construction of main gas									
		and oil pipelines,									•
		calculations of main oil									•
		pipelines and oil product									•
		pipelines, methods of									
		increasing their capacity.									
		In the process of mastering									
		this discipline, the student									
		forms and demonstrates									
		competencies that allow									
		applying the received									
		scientific and theoretical									,
		knowledge to solve									
		scientific and practical									
		problems.									
50	Production practice	The production practice I	2			V		V			
		is of an introductory									
		nature. During the									
		internship, students will									
		get acquainted with the									
		work of the production									
		enterprise, they will									
		observe the production									
		process.									
51	Production practice	Goals and objectives of	3			\mathbf{v}		V			,
		the practice:									,
		1. To ensure the formation									,
		of professional knowledge,									,
		skills and abilities in the									,
		information and									,
		communication field.									,
		2. To acquaint students									,
		with the methods of work									,
		and the specifics of the									

	activities of specialists in the production process. 3. To demonstrate the relationship between theoretical courses taught in the learning process and practical activities.											
	4. Consolidate students' knowledge											
<u> </u>	knowiedge	C	ycle of]									
			Selecta	ble con	nponen	t	 		ı	1	ı	
52 Chemical technology of solid combustible minerals	The purpose of the discipline is to form students' technological thinking in the field of solid fuel processing technology as an alternative to petroleum fuel, to provide information about the main methods and stages of fuel processing and the prospects for the development of the industry, and to teach students to creatively use general scientific and general engineering disciplines for management, understanding and explanation complex phenomena occurring in the processes of chemical processing of solid fuels	5	v				V			v		

53	Thermal	The purpose of studying	5		v		V		
	decomposition of	the course "Thermal							
	coal	decomposition of coal" is							
		to train highly qualified							
		specialists, chemical							
		engineers and technologists							
		for the processing of solid							
		fossil fuels, who know the							
		methods of calculation and							
		design of operational							
		installations and							
		equipment, the formation							
		of a scientific and technical							
		worldview among future							
		specialists. The technology							
		of thermal decomposition							
		of coal for the purpose of							
		production of various types							
		of fuels is considered; state							
		and prospects of the raw							
		material base of the coke							
<u> </u>	0 1	industry.							
54	Gas chemistry	The purpose of the	5	V			V		
		discipline is to form the							
		competence of the student							
		in the field of natural and							
		associated gas processing							
		technology. In the course							
		of studying the discipline,							
		the student must: - know							
		the importance of natural							
		gases in the economy and							
		energy, the composition of							
		hydrocarbon gases, their							
		physical and chemical							

	properties, the current state and prospects for the development of the gas processing industry in Kazakhstan and the world; be able to assess the technical and economic efficiency of the technology and possess the skills to determine the technical characteristics of devices and equipment;							
Production of hydrocarbon raw materials for the petrochemical industry	The purpose of studying the discipline: The formation of students' systemic knowledge on the theoretical foundations and technology for the production of hydrocarbon raw materials for the petrochemical industry. In the course of studying the discipline, the student must: -know the chemistry and mechanism of thermal and catalytic transformations of oil and gas components; - to know the physical and chemical properties of hydrocarbons and other components of oil and their influence on the properties of petroleum products, - to know the principles of constructing	5		v				

		technological schemes and designing technological processes in the									
		petrochemical industry.									
56	Corrosion, types of	The discipline is devoted to	5	v							
	corrosion of	the study of the main									
	petroleum	provisions of the theory of									
	equipment and	corrosion of metals and									
	corrosion inhibitors	alloys, the analysis of									
		factors affecting the									
		corrosion of structural									
		materials and considers									
		corrosion inhibitors in									
		relation to oilfield									
		equipment. Knowledge of									
		the basics of this course									
		will allow you to make the									
		right choice of structural									
		materials when creating									
		chemical equipment in									
		corrosion-resistant design.									
		All this will make it									
		possible to design and									
		operate production									
		equipment technically and									
		technologically more									
		competently									
57	Preparation and use	The course presents	6				v				
	of reservoir and	measures to maintain									
	fresh waters for	reservoir pressure, which is									
	injection into the	a complex of technological									
	reservoir	equipment that is necessary									
		for the preparation,									
		transportation and injection									
		of water into the oil			<u> </u>	<u> </u>			 		

		reservoir. The student must know: the theory of oil treatment in the fields; theory of the theoretical basis of the requirements for formation waters; use of statistical methods for processing experimental data.							
58	production of aromatic hydrocarbons	The purpose of the discipline: The formation of students' systemic knowledge on the theoretical foundations and industrial technologies for the production of aromatic hydrocarbons from petroleum feedstocks. In the course of studying the discipline, the student must: -know the structure, physicochemical and thermodynamic properties of aromatic hydrocarbons; - to know the industrial methods of separation and isolation of individual aromatic compounds from the concentrate of aromatic hydrocarbons; -know industrial technologies for increasing the resources of individual aromatic hydrocarbons and their isomers;	5	Y	V	V	v		

59	Modern	The discipline "Modern	5	V	V		V		
	petrochemistry	petrochemical production"							
	industry	is intended for professional							
		training of specialists in the							
		field of petrochemical							
		production. As a result of							
		studying the discipline, the							
		student must: -know the							
		chemistry and production							
		technologies of basic							
		petroleum products - raw							
		materials for the							
		production and processing							
		of polymers (plastics,							
		chemical fibers, films,							
		rubbers, varnishes,							
		coatings, etc.); - to develop							
		an economically viable and							
		environmentally safe							
		technology for processing							
		raw materials and semi-							
		products of petrochemical							
		synthesis; - have skills in							
		engineering calculations.							
60	Hydrogenation of	Purpose: - to form the	5	V	V		\mathbf{V}		
	coal	ability to understand the							
		origin, composition and							
		properties of coals, coal							
		hydrogenation processes,							
		as well as technologies for							
		obtaining motor fuels and							
		organic substances from							
		coal hydrogenation							
		products. As a result of							
		training: know the							

		molecular structure and petrographic composition of coals, carry out a macroscopic description of coals, have an idea about the microcomponents of coals, organic and								
		inorganic constituents of								
		coal, the influence of								
		various factors on the process of coal								
		hydrogenation								
61	Engineering design	Purpose: -to form the	5		v			V		
	of chemical-	ability to understand the	C		,			,		
	technological	issues of calculating								
	processes	chemical reactions								
		occurring in reactors								
		typical of chemical								
		technology processes. As a								
		result of training: know the								
		basics of the kinetics of								
		homogeneous and								
		heterogeneous processes, draw up the material and								
		energy balances of								
		reactors, understand the								
		issues of hydrodynamics.								
		thermodynamics of								
		chemical reactions,								
		schemes and principles of								
		operation of absorber								
		apparatuses, distinctive								
		features of bubbling and								
		spraying absorbers								

62	Catalysts and	The purpose of studying	5	v						v	
		the discipline "Catalysts									
	of petrochemistry	and catalytic processes of									
		petrochemistry" is the									
		assimilation by students of									
		the scientific foundations									
		of catalysis, the									
		development of the									
		student's competence in the									
		field of industrial catalysis.									
		As a result of studying the									
		discipline, the student									
		should know:									
		fundamentals of kinetics									
		and mechanisms of									
		catalytic reactions; - the									
		importance of catalytic									
		processes in the creation of									
		industrial technologies; -									
		theoretical foundations of									
		the most important									
		catalytic processes of the									
		petrochemical industry; -									
		methods of preparation and									
		conditions of application of									
		catalysts; -principles of									
		operation and methods of									
		regulating the parameters									
		of catalysts.									
	Processing of	The purpose of studying	5		V			V	V		
	hydrocarbon gas	the discipline is to lay the									
	into fuel	scientific foundations for									
	components and	the subsequent study and									
	valuable chemical	creation of the principles of									
	products	resource- and energy-									

	discipline, the student will master: physico-chemical methods of separation of a mixture of hydrocarbon gases and isolation of individual compounds; scientific foundations and technologies of processes for processing natural and liquefied petroleum gases; to focus on the development of energy-saving environmentally friendly technological productions.							
64 Ways to improve the technology of water injection in the reservoir	The course describes in	6	V	v				

	volume of injection in accordance with the technological indicators of wells and geological and physical characteristics of the formation, forming a step-by-step analysis algorithm with recommendations for its improvement.							
Theoretical foundations of the corrosion process of oilfield equipment	The purpose of the course is to study the basics of the theory of corrosion of various types of materials. As a result of studying the discipline, the student will know: the technology of oil and gas processing at refineries and gas processing plants; the principle of operation of the main equipment for primary oil and gas processing; the conditional image of equipment and methods of constructing technological schemes of installations; Be able to: perform and read technological schemes of oil and gas processing plants; Own: methods of technological calculation.	5						V

5. Curriculum of the educational program

«APPROVED»

Decision of the Academic Council

NPJSC«KazNRTU

named after K.Satbayev»

dated 06.03.2025 Minutes № 10

WORKING CURRICULUM

 Academic year
 2025-2026 (Autumn, Spring)

 Group of educational programs
 B060- "Chemical engineering and processes"

 Educational program
 6B07117- "Chemical technology of petroleum and chemical products"

 The awarded academic degree
 Bachelor of engineering and technology

 Form and duration of study
 5 tull time - 4 years

·																	
									A	llocati		ace-to-		-	based	on	
Discipline	Name of disciplines	Block	Cycle	Total ECTS	Total	lek/lab/pr Contact	in hours SIS (including	Form of	1 00	urse		urse		urse			Prerequisites
code			-,	credits	hours	hours	TSIS)	control	1	2	3	4	5	6	7	8	
									sem	sem	sem	sem	sem	sem	sem	sem	
	CYCLE OF GENERAL EDUCATION DISCIPLINES (GED) M-1.Module of language training																
				-1.Modu	le of lan	guage trai	ning		_	_	_	_			_		
LNG108	Foreign language		GED, RC	5	150	0/0/45	105	Е	5								
LNG104	Kazakh (russian) language		GED, RC	5	150	0/0/45	105	Е	5								
LNG108	Foreign language		GED, RC	5	150	0/0/45	105	Е		5							
LNG104	Kazakh (russian) language		GED, RC	5	150	0/0/45	105	Е		5							
M-2.Module of physical training																	
KFK101	Physical culture I		GED, RC	2	60	0/0/30	30	Е	2								
KFK102	Physical culture II		GED, RC	2	60	0/0/30	30	Е		2							
KFK103	Physical culture III		GED, RC	2	60	0/0/30	30	Е			2						
KFK104	Physical culture IV		GED, RC	2	60	0/0/30	30	Е				2					
M-3.Module of information technology																	
CSE677	Information and communication technology		GED, RC	5	150	30/15/0	105	Е			5						
			M-4.5	Socio-cult	ural de	velopment	module										
HUM137	History of Kazakhstan		GED, RC	5	150	15/0/30	105	GE		5							
HUM134	Module of socio-political knowledge (cultural studies, psychology)		GED, RC	5	150	30/0/15	105	Е			5						
HUM132	Philosophy		GED, RC	5	150	15/0/30	105	Е				5					
HUM120	Module of socio-political knowledge (sociology, political science)		GED, RC	3	90	15/0/15	60	Е				3					
	M-5. Mo	dule o	n the ba	sis of ant	i-corrup	tion cultu	re, ecology an	d life safet	y								
MNG489	Fundamentals of economics and entrepreneurship	1	GED, CCH	5	150	30/0/15	105	Е				5					
MNG564	Basics of Financial Literacy	1	GED, CCH	5	150	30/0/15	105	Е				5					
HUM159	Law basics	1	GED, CCH	5	150	30/0/15	105	Е				5					
CYCLE OF BASIC DISCIPLINES (BD)																	
M-6. Module of physical and mathematical training																	
MAT101	Mathematics I		BD, UC	5	150	15/0/30	105	Е	5								
PHY468	Physics		BD, UC	5	150	15/15/15	105	Е	5								
MAT102	Mathematics II		BD, UC	5	150	15/0/30	105	Е		5							MAT101
M-7. Module of basic training																	
CHE692	Introduction to speciality		BD, UC	4	120	30/0/15	75	Е	4								

GEN429	Engineering and computer graphics		BD, UC	5	150	15/0/30	105	Е	5							
CHE495	Chemistry		BD, UC	5	150	15/30/0	105	Е		5						
AAP173	Practical training		BD, UC	2				R		2				\vdash		
CHE665	Organic Chemistry I		BD, UC	6	180	30/15/15	120	Е			6			\vdash		
CHE456	Field preparation of oil and gas		BD, UC	5	150	30/0/15	105	Е			5			\vdash		
CHE127	Physical chemistry	1	BD, CCH	5	150	15/15/15	105	Е			5					
HBI126	Analytical chemistry and physico-chemical methods of analysis	1	BD, CCH	5	150	15/15/15	105	Е			5					
MNG562	Legal regulation of intellectual property	1	BD, CCH	5	150	30/0/15	105	Е			5					
CHE639	Organic chemistry II		BD, UC	5	150	15/15/15	105	Е				5		\vdash		
CHE470	Collection, preparation and transportation of hydrocarbon gas		BD, UC	5	150	30/0/15	105	Е				5				
CHE570	General chemical technology	1	BD, CCH	5	150	30/15/0	105	E				5				
CHE682	General principles of chemical and technological processes	1	BD,	5	150	30/0/15	105	Е				5				
IDD427	Ecology and life safety	1	BD,	5	150	30/0/15	105	Е				5				
CHE950	ESG principles in inclusive culture	1	BD,	5	150	30/0/15	105	E				5				
HUM158	The basics of anti-corruption culture	1	BD,	5	150	30/0/15	105	E				5				
	-		CCH BD,								_					
PET525	Fundamentals of scientific research Fundamentals of sustainable development and ESG projects in	1	CCH BD,	5	150	30/0/15	105	E				5				
MNG563	Kazakhstan	1	CCH BD,	5	150	30/0/15	105	Е				5				
CSE880	Fundamentals of Artificial Intelligence	1	ССН	5	150	30/0/15	105	E				5	_			
CHE471	Technological processes of oil production intensification		BD, UC	5	150	30/0/15	105	E					5			
CHE453	Fundamentals of petrochemical synthesis		BD, UC	5	150	30/0/15	105	E			_		5	_		
CHE467	Hardware design of oil and gas processing processes I		BD, UC	5	150	30/0/15	105	E					5			
CHE695 CHE472	CAD Chemical engineering I Fundamentals of physical and chemical analysis of oil refining		BD, UC	5	150	0/15/30 30/15/0	105	E E					5			
CHE698	products and petrochemistry Technology of processing of hydrocarbon raw materials I		BD, UC	5	150	15/15/15	105	Е					5			
CHE699	CAD Chemical Engineering II		BD, UC	5	150	0/15/30	105	E					Ť	5		
CHE600	Hardware design of oil and gas processing processes II		BD, UC	4	120	30/0/15	75	E						4		
HBI137	Processing technology of hydrocarbon raws II		BD, UC	5	150	30/0/15	105	E						5		
AUT434	Automation of control systems in chemical engineering processes	1	BD, CCH	6	180	30/15/15	120	E							6	
AUT435	Automation of control systems	1	BD,	6	180	30/15/15	120	Е							6	
			CCH													
						DISCIPLI										
					dule of b	asic traini	ng							_		
AAP102	Production practice I		PD, UC	2				R				2				
						essional a			_		_	_	_	_		
CHE681	Chemical processing of hydrocarbon gas		PD, UC	4	120	30/0/15	75	E						4		
CHE560	Fundamentals of enterprise design		PD, UC	5	150	30/0/15	105	Е	_					5		
CHE680	Technology of organic and petrochemical production		PD, UC	4	120	30/0/15	90	E						4		
AAP183	Production practice II		PD, UC	3				R	_		_	_	_	3		
CHE670	Equipment of an oil and gas enterprise		PD, UC	6	180	30/0/30	120	Е							6	
CHE463	Catalysts and catalytic processes of petrochemistry	1	PD, CCH	5	150	30/0/15	105	Е							5	
CHE683	Engineering design of chemical-technological processes	1	PD, CCH	5	150	30/0/15	105	Е							5	
CHE411	Corrosion, types of corrosion of petroleum equipment and corrosion inhibitors	2	PD, CCH	5	150	30/15/0	105	Е							5	
CHE482	Theoretical foundations of the corrosion process of oilfield equipment	2	PD, CCH	5	150	30/0/15	105	Е							5	
CHE671	Preparation and applying of reservoir and fresh water for injection into the reservoir	3	PD, CCH	6	180	30/0/30	120	Е							6	
CHE685	Ways to improve the technology of water injection into the reservoir	3	PD, CCH	6	180	30/0/30	120	Е							6	
CHE476	Processing of hydrocarbon gas into fuel components and valuable chemical products	4	PD, CCH	5	150	30/0/15	105	Е							5	
	-		•	-		•		-								

CHE686	Hydrogenation of coal	4	PD, CCH	5	150	30/0/15	105	Е							5		
HBI101	Pipeline transport of oil and oil products		PD, UC	4	120	30/0/15	75	Е								4	
CHE610	Technology for the production of aromatic hydrocarbons	1	PD, CCH	5	150	30/0/15	105	Е								5	
CHE484	Modern petrochemistry industry	1	PD, CCH	5	150	30/0/15	105	Е								5	
CHE611	Chemical technology of solid combustible minerals	2	PD, CCH	5	150	30/0/15	105	Е								5	
CHE687	Thermal decomposition of coal.	2	PD, CCH	5	150	30/0/15	105	Е								5	
CHE146	Gaschemistry	3	PD, CCH	5	150	30/0/15	105	Е								5	
CHE462	Production of hydrocarbon raw materials for the petrochemical industry	3	PD, CCH	5	150	30/0/15	105	Е								5	
	M-9. Final certification module																
ECA103	Final examination		FA	8												8	
	Additional type of training (ATT)																
AAP500	Military training																
	Total based on UNIVERSITY:									29	28	32	30	30	33	27	
Total Dased on UNIVERSITY:									6	0	6	0	6	60	6	0	

Number of credits for the entire period of study

		amber of creaks for the chare period of	stau,								
Cycle code	Cycles of disciplines	Credits									
	Cycles of disciplines	Required component (RC)	University component (UC)	Component of choice (CCH)	Total						
GED	Cycle of general education disciplines	51	0	5	56						
BD	Cycle of basic disciplines	0	96	16	112						
PD	Cycle of profile disciplines	0	28	36	64						
	Total for theoretical training:	51	124	57	232						
FA	Final attestation			·	8						
	TOTAL:				240						

Decision of the Educational and Methodological Council of KazNRTU named after K.Satpayev. Minutes $\sqrt{8}$ 3 dated 20.12.2024

Decision of the Academic Council of the Institute. Minutes № 3 dated 28.11.2024

Signed: Governing Board member - Vice-Rector for Academic Affairs	Uskenbayeva R. K.		i de la	
Approved:	V. I 7 F			
Vice Provost on academic development Head of Department - Department of Educational Program	Kalpeyeva Z. Б.			
Management and Academic-Methodological Work	Zhumagaliyeva A. S.			
Director - Geology and Oil-gas Business Institute named after K. Turyssov	Auyelkhan Y	0 T		
Department Chair - Chemical and biochemical engineering	Mangazbayeva R. A.			
Representative of the Academic Committee from EmployersAcknowledged	Seytenova G. Z.			